Resistance to Germline RNA Interference in a Caenorhabditis elegans Wild Isolate Exhibits Complexity and Nonadditivity
نویسندگان
چکیده
Resolving the genetic complexity of heritable phenotypic variation is fundamental to understanding the mechanisms of evolution and the etiology of human disease. Trait variation among isolates from genetically efficient model organisms offers the opportunity to dissect genetic architectures and identify the molecular mechanisms of causation. Here we present a genetic analysis of loss of sensitivity to gene knockdown via exogenous RNA interference in the germline of a wild isolate of the roundworm Caenorhabditis elegans. We find that the loss of RNA interference sensitivity in the wild isolate CB4856 is recessive to the sensitivity of the lab strain N2. A cross of the strains produced F2 with intermediate sensitivities, and the segregation of the trait among F2s strongly deviated from a single locus recessive allele expectation. Linkage analysis in recombinant inbred lines derived from CB4856 and N2 identified a single significant locus on chromosome I that includes the argonaute gene ppw-1. The alleles for ppw-1 were unable to explain the sensitivity of 18 (12.1%) of the recombinant inbred lines. Complementation tests and F2 segregation analysis of these recombinant inbred lines revealed cases of complex epistatic suppression and enhancement of the effects of ppw-1. We conclude that the variation in RNA interference sensitivity between CB4856 and N2 likely involves the nonadditive interactions of eight or more genes in addition to ppw-1.
منابع مشابه
Natural RNA interference directs a heritable response to the environment
RNA interference can induce heritable gene silencing, but it remains unexplored whether similar mechanisms play a general role in responses to cues that occur in the wild. We show that transient, mild heat stress in the nematode Caenorhabditis elegans results in changes in messenger RNA levels that last for more than one generation. The affected transcripts are enriched for genes targeted by ge...
متن کاملPPW-1, a PAZ/PIWI Protein Required for Efficient Germline RNAi, Is Defective in a Natural Isolate of C. elegans
One of the remarkable aspects about RNA interference (RNAi) in Caenorhabditis elegans is that the trigger molecules, dsRNA, can be administered via the animal's food. We assayed whether this feature is a universal property of the species by testing numerous strains that have been isolated from different parts of the globe. We found that one isolate from Hawaii had a defect in RNAi that was spec...
متن کاملComparative genetics of sex determination: masculinizing mutations in Caenorhabditis briggsae.
The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and mor...
متن کاملEGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in Caenorhabditis elegans.
Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered ...
متن کاملGLH-1, the C. elegans P granule protein, is controlled by the JNK KGB-1 and by the COP9 subunit CSN-5.
The GLHs (germline RNA helicases) are constitutive components of the germline-specific P granules in the nematode Caenorhabditis elegans and are essential for fertility, yet how GLH proteins are regulated remains unknown. KGB-1 and CSN-5 are both GLH binding partners, previously identified by two-hybrid interactions. KGB-1 is a MAP kinase in the Jun N-terminal kinase (JNK) subfamily, whereas CS...
متن کامل